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Abstract

The Darcy model with the Boussinesq approximation is used to study double-diffusive natural convection in a
shallow porous cavity. The horizontal walls are subject to uniform fluxes of heat and mass, while the side vertical walls
are exposed to a constant heat flux of intensity aq’, where a is a real number. Results are presented for
—20<Rr <50, —20<Rs <20, 5<Le<10, 4<A<8 and —0.7<a<0.7, where Rr,Rs, Le and A correspond to
thermal Rayleigh number, solutal Rayleigh number, Lewis number and aspect ratio of the enclosure, respectively. In
the limit of a shallow enclosure (4 > 1) an asymptotic analytical solution for the stream function and temperature and
concentration fields is obtained by using a parallel flow assumption in the core region of the cavity and an integral form
of the energy and the constituent equations. In the absence of side heating (a = 0), the solution takes the form of a
standard Bénard bifurcation. The asymmetry brought by the side heating (a # 0) to the bifurcation is investigated. For
high enough Rayleigh numbers, multiple steady states near the threshold of convection are found. These states rep-
resent flows in opposite directions. In the range of the governing parameters considered in the present study, a good
agreement is observed between the analytical predictions and the numerical simulations of the full governing equa-

tions. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The growing research on double diffusive convection
in porous media, where the buoyancy can arise not only
from density differences due to variations in temperature
but also from those due to variations in solute concen-
tration, is mainly motivated by its importance in many
natural and industrial problems. These include drying
processes, the transport of a contaminant in saturated
soil, the migration of moisture in fibrous insulation,
grain storage installations, food processing, etc. Double
diffusive flows through porous media are also of interest
in geophysical systems, electrochemistry and metallurgy.
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The state-of-the art has been summarized in a recent
book by Nield and Bejan [1].

Early investigations on double diffusive natural
convection in porous media primarily focused on the
problem of convective instability in a horizontal layer.
To this end Nield [2], Taunton et al. [3], Rubin [4],
Rudraiah et al. [5], Poulikakos [6], Taslim and Naru-
sawa [7] and Malashetty [8] relied on linear stability
analysis to investigate the onset of thermohaline con-
vection in a horizontal porous layer. Criteria for the
onset of motion, via stationary and oscillatory modes,
were derived by these authors for various conditions.
Non-linear stability analyses have also been reported
by Rudraiah et al. [5], Brand and Steinberg [9], Nguyen
et al. [10] and Mamou et al. [11]. The existence of a
subcritical Rayleigh number, at which a convective
solution bifurcates from the rest state through finite
amplitude convection, was demonstrated in these
studies. A combined theoretical and numerical study of
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List of symbols

A cavity aspect ratio, L'/H'

a real number

Cs constant concentration gradient in x-direction
Cr constant temperature gradient in x-direction
D mass diffusivity of species

H' height of the layer

Vi constant mass flux per unit area

K permeability of the porous medium

k thermal conductivity of the fluid saturated

porous medium
L thickness of the enclosure
Le Lewis number, o/D
N buoyancy ratio, figAS’/fr AT’
Nu Nusselt number, Eq. (10)

q constant heat flux per unit area

Rt thermal Darcy—Rayleigh number,
gPKH'AT' oy

Rg solutal Rayleigh number, N Le Rt

S dimensionless concentration, (S" — Sj)/AS’

Sh Sherwood number, Eq. (11)

S, reference concentration at X' =0, y =0

AS"  characteristic concentration, j/H'/D
AS dimensionless wall-to-wall concentration

difference
T dimensionless temperature, (7" — 7)) /AT’
t dimensionless time, #'o/cH"
T; reference temperature at x' =0, ) =0

AT'  characteristic temperature, ¢'H'/k
AT  dimensionless wall-to-wall temperature
difference

dimensionless velocity in x-direction, v'H’ /o
dimensionless velocity in y-direction, v'H' /o
dimensionless coordinate axis, x'/H’
dimensionless coordinate axis, y'/H’

= % = R

Greek symbols
o thermal diffusivity, k/(pC);

Ps concentration expansion coefficient

Pr thermal expansion coefficient

& normalized porosity of the porous medium,
¢/o

v kinematic viscosity of the fluid

n dynamic viscosity of the fluid

Os dimensionless concentration field, Eq. (14)

O dimensionless temperature field, Eq. (13)

o density of the fluid

(pC); heat capacity of fluid

(pC), heat capacity of saturated porous medium

o heat capacity ratio (pC),/(pC);

¢ porosity of the porous medium

b4 dimensionless stream function, ¥/«

v, stream function value at the center of the
enclosure, Eq. (25)

Superscripts

! dimensional variable

sub subcritical

sup  supercritical

Subscripts

c onset of motion; or center of the cavity
max maximum value

min  minimum value

o reference state

the mass transfer effected by high Rayleigh number
Bénard convection in a two-dimensional saturated
porous layer heated from below was conducted by
Trevisan an Bejan [12]. Three distinct scaling laws were
proposed to predict the overall mass transfer rate in
terms of the Rayleigh and Lewis numbers. Convective
flows through porous media heated from below in a
square domain with two opposing sources of buoyancy
have been investigated numerically by Rosenberg and
Spera [13] for a variety of boundary and initial con-
ditions on the salinity field. Steady-state calculations of
porous media heated and salted from below were ob-
tained by these authors in order to predict the effect of
the Rayleigh and Lewis numbers and buoyancy ratio
on both Nusselt and Sherwood numbers. Double dif-
fusive fingering convection in a horizontal porous me-
dium in which it was assumed that the flow exhibits a
horizontal periodicity has been studied by Chen and
Chen [14]. The stability boundaries which separate re-

gions of different types of convective motion were
identified in terms of the thermal and solute Rayleigh
numbers.

All the above studies are concerned with the onset
and development of double diffusive convective flows
within a porous material subject to vertical destabilizing
density gradients induced by the presence of two-com-
ponents in the fluid, with different diffusivities. In par-
ticular, this type of situation has been considered by
Mamou et al. [11] for the case of a shallow horizontal
porous cavity with constant fluxes of heat and mass
applied on the two opposing horizontal sides while the
vertical boundaries are kept impermeable and adiabatic.
Analytical solutions were obtained for the flow,
temperature and solute fields using a parallel flow ap-
proximation. In particular, the bifurcation diagrams for
the onset of wunicellular convective motion were
demonstrated to be perfectly symmetrical. Also the
critical Rayleigh numbers for onset of supercritical and
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subcritical convection flows were predicted analyti-
cally.

In the present investigation, the effects of a weak
horizontal temperature gradient on the convective flow
induced in a porous layer heated and salted from below
are investigated. It will be shown that this parameter
alters the symmetry properties of the bifurcation dia-
grams mentioned above. The study is also concerned
with the possible existence of multiple steady-state so-
lutions for a given set of the governing parameters. The
first part of the paper presents an analytical approach to
the development of the convective flow using a parallel
flow approximation. The second part presents numerical
results for the flow field, temperature and concentration
distributions, and heat and mass transfer rates for var-
ious flow regimes. The fully non-linear set of governing
equations is solved numerically using a finite difference
method with an implicit scheme.

2. Formulation of the problem

The geometry of the problem is shown in Fig. 1.
The shallow horizontal porous enclosure is of height H’
and thickness L', and the Cartesian coordinates (x',)’)
with the corresponding velocity components (', ') are
indicated herein. The top and bottom horizontal
boundaries are subject to vertical uniform fluxes of heat
and mass per unit area, ¢’ and j/, respectively. A uni-
form heat flux aq’, is applied on the two vertical im-
permeable walls. The porous matrix is assumed to be
homogenous and isotropic and the appropriate Darcy
model is used. Interaction between the thermal and
concentration gradients, known as Soret and Dufour
effects, are neglected. The fluid that saturates the po-
rous matrix is modeled as a Boussinesq fluid whose
density, p, varies linearly with temperature 7' and
concentration S’ as

P:ﬂo[l _/3T(T/_T(;)_/5S(S'_S(/))]v (1)

where p, is the fluid density at temperature 7; and
concentration Sj, and fir and fg are the thermal and
concentration expansion coefficients, respectively. The
subscript 0 refers to conditions at the origin of the co-
ordinate system.

aq’ aq’

e— = >

P J

Fig. 1. Flow configuration and coordinate system.

The following dimensionless variables are used

(v,y) =W Y)/H, (uv) = ) o, t=1{a/H s,
T=(T'—Ty)/AT', S=(S-S,)/AS, AT =qH'/k,
AS'=jH'/D, ¢=¢/a,

2)

where ¢ is the time, k and D the thermal conductivity of
the saturated porous medium and the mass averaged
diffusivity through the fluid mixture, respectively,
o =k/(pC);, the thermal diffusivity of the porous me-
dium, ¢ = (pC),/(pC);, the saturated porous medium to
fluid heat capacity ratio, and ¢ is the porosity of the
porous matrix.

In the following analysis, the stream function for-
mulation is introduced in the mathematical model. In
order to satisfy the continuity equation, the stream
function ¥ is defined such that

oY oY
u=go, V=g (3)
In terms of the above definitions, the dimensionless
governing equations expressing conservation of mo-
mentum, energy and species are, respectively,

0
VY = —RT§(T + NS), (4)
or  dr oT
M =u—Fv—+— 5
VI=ugtve o (5)
1_, os as oS

The dimensionless boundary conditions sketched in
Fig. 1 are

A or oS
X = 5, lP—O, a—*[l, &—0, (73)
1 or oS
=+-, ¥Y=0, —=-1, —=-1L 7b
y 2’ ) ay ) ay ( )

Egs. (4)—(6), (7a), (7b) indicate that the present problem
is governed by the following dimensionless parameters,
namely the thermal Darcy-Rayleigh number Ry, the
solutal to buoyancy ratio N, the Lewis number Le, the
cavity aspect ratio 4 and the normalized porosity &
defined as

gPrKAT'H' BSAS'
RT = ) = )
oy P AT’ (8)

A=LJ/H, Le=0a/D, ¢=d¢]/a,

where K is the permeability of the porous medium, g the
acceleration due to gravity and v the kinematic viscosity
of the fluid.
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Naturally, the solution of the present problem de-
pends also on the magnitude of the heat flux imposed on
the vertical walls of the cavity, i.e. on the value of the
parameter a.

3. Numerical solution

A finite difference method was used to obtain nu-
merical solutions of the complete governing Egs. (4)—(6).
The equations for the stream function, Eq. (4), and
temperature and concentration, Egs. (5) and (6) are first
discretized according to the well-known central differ-
ence scheme for a regular mesh size. The discretized
equations for ¥, T and S are then solved at each time
step using the last available field values, until conver-
gence to a steady or to a stationary oscillation state is
achieved.

The energy and concentration equations (5) and (6)
were solved using an alternating direction implicit (ADI)
method. The stream function field was obtained from
Eq. (4) using the successive over-relaxation (SOR)
method and known temperature and concentration dis-
tributions. The iterative procedure was repeated until
the following condition was satisfied:

22
202

n+1 n
prtl g

<1074 9)

q/;ﬁ»l

irj

where the superscripts indicate the value of the nth
and (n+ 1)th iterations, respectively, the subscript i
and j indices denote grid locations in the (x,y) plane.
A further decrease of the convergence criteria 10~*
did not cause any significant change in the final re-
sults.

The accuracy of the numerical model was verified by
comparing results from the present investigation with
several results in literature. Since the validation of the
present code has already been discussed in the past by
Mamou et al. [11], the details will not be presented here.
Naturally, the precision of the numerical results depends
on the mesh size, which is a function of the governing
parameters and particularly of the aspect ratio of the
cavity. Most of the numerical results presented here were
obtained for 4 =4 for which a mesh of 100 x 60 was
found sufficient to model accurately the problem.
However, when an aspect ratio 4 = 8 was necessary to
describe the parallel flow pattern, a mesh size of
280 x 80 was used.

In the present notation, the Nusselt and Sherwood
numbers in the vertical direction, are given, respectively,
by

!

q 1
¢ _ 1 10
“TRAT/H AT (10)

and

joo_1

h=———=— 11
DAS'/H'  AS ()

where AT' = T'(0, —1/2) — 17(0,1/2) and AS’ = §'(0, —

1/2) — §'(0,1/2) are the temperature and concentration

differences between the lower and upper walls of the

enclosure at the position x = 0.

4. Analytical solution

For sufficiently large aspect ratios A, the present
problem can be significantly simplified by the parallel
flow approximation. The analytical procedure used
here has been presented before (see for instance
[11,15,16] so that only a brief outline will be included
before passing on to the results obtained from it. In the
central part of the layer, the flow velocity can be as-
sumed to be parallel in the x-direction, such that only
the velocity component u(y) in that direction exists.
Thus, it is assumed that

P(x,y) = ¥(y). (12)

Also, the temperature and concentration fields are the
sums of a linearly varying longitudinal part and an un-
known transverse distribution so that

T(x,y) = Crx + 0:(y) (13)
and
S(x,y) = Csx + 0s(y), (14)

where Ct and Cs are unknown constant temperature
and concentration gradients, respectively, in the x-di-
rection. Substituting in the governing equation (4) and in
the steady form of Eqgs. (5) and (6), we obtain

'y
— = —R1(Cr + NCs), 15
G = RelCr NG (15)
d’0r dy

=Cr— 16
dy2 T dy ’ ( )
d*0s dy

=LeCs— 17
dy? d (17)
Boundary conditions in the y direction are now

b B o0r o0s

y_:ti. Y =0, - 1, o I. (18)

The thermal and solutal boundary conditions in the x-
direction cannot be reproduced exactly with the parallel
flow approximation. Instead, following Trevisan and
Bejan [15], it can be easily demonstrated that the heat
and solute transports across a transversal section, at any
x, are given by the following expressions:
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1/2 12 a7
Tud f/ —dy=a 19
/71/2 7 ~1/2 Ox 7 (19)
and
1/2 1 1/2 oS
Sud f—/ —dy=0. 20
./4/2 Le J_ip ax 4 (20)

Solutions of Egs. (15)-(17) satisfying the boundary
conditions (18) are:

Y=Y (1), (21)
u= —8%.y, (22)
T = Crx — % (49* —3y) —y, (23)
S = Csx — % (4y* = 3y) —y, (24)
where

Y, = %ROT(CT + NCs) (25)
and

Ry = oy With R*P = 12. (26)

Substituting Egs. (21)—(26) into Egs. (19) and (20) yields
the following expressions for Cr and Cs:

4¥. — 6a)b
326+ ¥5)
and
4bLleV,
= "¢ 28
* T 3(2b + Le2¥?) 28)

where b = 15/16.
Substituting Eqs. (27) and (28) into Eq. (25) yields
the following expression for ¥.:

5
> ai=0, (29)
i=0

where

ay = 6b*R}a,

a; = —4b*[R}(1 + NLe) — 1],
ay =3abLe* Ry,

30
ay = —2b[R}Le(N + Le) — (1 + Le*)], (30)
as = 0,
as :Lez‘

The x-temperature gradient Cy and solutal gradient Cs
in the stream function and temperature and concentra-
tion field solutions, Egs. (21), (23) and (24), can be ob-
tained for any combination of the controlling
parameters Rt,N,Le and a by numerically solving the
transcendental equations (29) and (30).

Substituting Eqgs. (23) and (24) into Egs. (10) and
(11), it is found that the Nusselt and Sherwood numbers
are given, respectively, by

2
WU -
(126 + ¥7)
and
22
Sh— 6(2b + Le ?’g) - (32)
(126 + Le*¥P;)

5. Results and discussion

The analytical solution obtained from the parallel
flow approximation was compared against the numerical
solution obtained with a finite difference program based
on the numerical approach described early. Comparison
of the analytical and numerical results is presented in
this section.

As discussed earlier, the present problem is governed
by six dimensionless parameters, namely Ry, N,Le, 4,¢
and a. In the following discussion, it is assumed that the
normalized porosity of the porous medium is ¢ = 1.
Also, the analytical solution is obtained on the basis of
the shallow cavity approximation (4 >> 1) such that the
results predicted by this model are more accurate at
large 4.

5.1. Convection in the absence of side heating (a=0)

Double-diffusive convection in a horizontal porous
layer induced solely by vertical gradients of heat and
solute will be discussed first. Typical bifurcation dia-
grams will be presented for the case when the tempera-
ture gradient is destabilizing and when the concentration
gradient is either stabilizing or destabilizing. Then the
effect of side heating on these bifurcation diagrams will
be investigated.

For finite amplitude convection, the velocity, tem-
perature and concentration fields and Nusselt and
Sherwood numbers are obtained from Egs. (21), (23),
(24), (31) and (32), where the value of Cr, Cs and YV, are
evaluated by setting @ = 0 into Egs. (27)—(30).

From Eqgs. (29) and (30), it is readily found that the
flow intensity ¥, is given by

12
‘I’c:i\L/—eI;[dl i,/d§+d§} , (33)

where
dy = R%Le(N + Le) — (Le* + 1),

(34)
dy =4LS[RS(1 + NLe) — 1].

The above results are in agreement with those pre-
dicted in the past by Mamou et al. [11] while studying
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double-diffusive convection in a horizontal porous layer
heated and salted from below.

From the above equations, it is seen that five steady-
state solutions are possible. One corresponds to the rest
state regime (¥, = 0) and the four others to finite am-
plitude flow regimes. The signs + and — outside the
brackets refer to the possible occurrence of counter-
clockwise and clockwise circulations, respectively. Inside
the brackets, they refer to stable and unstable branches,
respectively.

The onset of supercritical convection R}, charac-
terized by a transition from the quiescent state to con-
vective regime occurring through zero flow amplitude
(Y. = 0), is obtained when the conditions d; < 0 and
d, = 0 are satisfied, as

RYY =12 — R, (35)

where subscript c refers to the onset of motion, subscript
sup to supercritical Rayleigh number, Rs = RtN Le be-
ing the solutal Rayleigh number.

Another type of onset of motion, characterized by a
transition from the rest state through a finite amplitude
convection ¥, = v/bd; /Le, is also possible. The thresh-
old for this latter, called subcritical bifurcation, occurs
only when the buoyancy forces induced by the thermal
and solutal contributions are opposing each other. The
subcritical Rayleigh number Ra$®® at which such flows
are induced can be obtained from the conditions d; > 0
and d? +d> =0, as

12 :
Ra® = I (\/Lez —1+ \/_Rs/12> : (36)

Analytical
- /3/‘
0
-l F Nuch

.
-2 L L
10 15 20 25

@) Ry

Ye 1
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Fig. 2(a) shows the bifurcation diagram for ¥, as a
function of thermal Rayleigh number Rr, in the case of
pure thermal convection (Rs = 0). This situation corre-
sponds to the classical Bénard problem. A pitchfork
bifurcation occurs at a critical Rayleigh number

RYY =12 (37)
as given by Eq. (33). This critical Rayleigh number has
been predicted in the past by Nield [2] on the basis of the
linear stability theory. The prediction of the onset of
motion is correctly deduced from a parallel flow ap-
proximation due to the fact that the onset of motion
within a horizontal layer heated from below by a con-
stant heat flux occurs at zero wave number. The ana-
lytical solution, represented by a line, is seen to be in
excellent agreement with the numerical solution of full
governing equations, depicted by black dots.

Figs. 2(b) and (c) summarize the ways in which the
pitchfork bifurcation diagram for pure thermal convec-
tion (Fig. 2(a)) is affected by the presence of a solutal
contribution when Le=10. Fig. 2(b) exemplifies the bi-
furcation diagram for the case Rs = 10 for which both
the thermal and solutal contributions are destabilizing.
The occurrence of two distinct convective regimes is
observed. For Rt between the thermal-solutal and the
thermal thresholds, Eqgs. (33) and (35), respectively, a
weak convective flow exists. This type of flow is illus-
trated in Fig. 3(a) which shows streamlines and contours
of temperature, concentration and density for the case
Ry =5. The approximate validity of the parallel flow
approximation in the central region of the cavity is ev-
ident. The contributions of temperature and concentra-

Analytical

) L L L L
0 5 10 15 20 25

Ye1 |

2 L

-1 b Numerical \\
.

10 15
()

20 25
RT

Fig. 2. Bifurcation diagrams for Le = 10: (a) Rs = 0, pure thermal convection; (b) Rs = 10, a destabilizing solutal contribution;

(c) Rs = —10, a stabilizing solutal contribution.
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d(@E=s»
]

——

= ==

(a) (b)

Fig. 3. Contour lines of stream function ¥, temperature 7, concentration S and density p = —(7 + NS) for Rs = 10, Le =10, 4 = 4:

(a) Ry =5, (b) Ry = 25.

tion fields to the buoyancy forces are of the same order.
As the value of Ry is made larger than the pure thermal
threshold, the resulting flow becomes much stronger, as
illustrated in Fig. 3(b) for Ry = 25. In this flow regime,
driven by the temperature gradients, the concentration
field in the central part of the cavity is almost uniform.
This is due to the large mixing resulting from the strong
convective motion induced by the thermal-dominated
regime.

The case Rs = —10 for which a stabilizing solutal
influence competes with a destabilizing thermal influence
is depicted in Fig. 2(c). The resulting diagram indicates
the occurrence of a subcritical bifurcation characterized
by the fact that the onset of motion occurs through non-
linear instabilities. This type of bifurcation is possible

only when the two buoyancy forces are opposing each
other and when the stabilizing agent is the slower dif-
fusion component (Le > 1). For this situation, the sol-
utal branches depicted as dashed lines are now unstable.
They are connected with the stable thermal branches,
depicted as solid lines, by saddle-node bifurcations.

5.2. Convection in the presence of side heating (a # 0)

In this section the effects of side heating intensity a,
on the bifurcation curves discussed in the above section,
are investigated. Figs. 4(a) and (b) show the analytical
solutions predicted by the parallel flow approximation
for the case Le=10 and Rs = 20 and —20, respectively.
The solutions have the form of the curved surfaces in a

(b)

Fig. 4. Solution surface showing ¥, as a function of Rt and a for Le =10 and (a) Rs = 20, (b) Rs = —20.
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three-dimensional space with ¥, given as a function of
Rt and a. An equivalent result was obtained by Kalla
et al. [17] for the case of a porous cavity subject to
uniform heat fluxes on all sides. For a = 0, the solution
corresponds to the intersection between the curved sur-
face and the plane ¢ = 0 and takes the form of a stan-
dard Bénard bifurcation (see Fig. 2). On the other hand,
for a #0 the side heating acts as an imperfection
brought to the bifurcation curves. Another type of im-
perfection has been considered in the past by Sen et al.
[18] while investigating the effect of small tilt angles
about the horizontal position on natural convection in a
porous layer heated from the bottom.

Fig. 5 shows the effect of side heating (¢ = 0.1) on the
magnitude of the stream function at the centre of the
cavity ¥, as a function of Ry for Le=10 and Rs = 20.

Numerical ~ Analytical

2

Fig. 5. Flow intensity ¥. as a function of Ry for
Rs =20, Le = 10 and side heating with @ = 0 and 0.1.

The analytical solution, predicted by the present theory,
is represented by the solid (stable) and dashed (unstable)
lines and is seen to be in good agreement with the nu-
merical results depicted by blackened circles. For com-
parison, the bifurcation curves corresponding to
convection in the absence of side heating (Rs = 20,
a=0) and for pure thermal situation (Rs =0, a =0)
are also included in the graph.

As it can be seen from Fig. 5, convection in the
presence of side heating (a # 0) is possible for any value
of the thermal Rayleigh number Rt. The case Ry = 0 will
be considered first. This situation corresponds to the
case of a layer salted from below. Since the solutal
Rayleigh number Rs = 20 is above the value of the
supercritical Rayleigh number R§Y =12, convection
occurs. The resulting cell can rotate indifferently clock-
wise or counterclockwise, giving rise to two different
convection states. The transition from these two solu-
tions, in the vicinity of Rt = 0, will be discussed latter.
The case Rt < 0 corresponds to the situation where the
direction of the heat fluxes depicted in Fig. 1 is reversed.
Thus, the thermal contribution applied on the bottom of
the cavity is now stabilizing while the right and left
vertical walls are heated and cooled, respectively. As a
result the fluid flows up along the right heated wall and
comes down the left cooled wall giving rise to a
counterclockwise cell and a positive value of ¥.. Natu-
rally, for Rt > 0 the flow circulation is clockwise, in
agreement with the thermal boundary conditions of Fig.
1, with a negative value of ¥.. These flows, which nu-
merically can develop from rest as initial conditions are
referred as “natural” flows (see for instance [18]).
However, Fig. 5 indicates that, as the magnitude of Ry is

=)

P T — -
N [ - - - // ’//_:
N\ R
(@ (b)

Fig. 6. Contour lines of stream function ¥ (top), temperature 7, concentration S and density p= —(7 + NS) for Ry =25,
Rs =20, Le =10, A =4 and a = 0.1: (a) natural solution and (b) antinatural solution.
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increased above a critical Rayleigh number R, ~ 17, the
value of which depends on Rg, Le, and a, other solutions
corresponding to counterclockwise circulations are
possible. These flows, which circulate in a direction
opposite to that discussed above are called “antinatu-
ral”. These two types of solutions are illustrated in Figs.
6(a) and (b) which show the contour lines of stream-
function, temperature, concentration and normalized
density for the natural and the antinatural stable flows
that coexist for Rt = 25,Rs = 20,Le = 10,a = 0.1 and
A = 4. Also the curve corresponding to natural (coun-
terclockwise flow) solution for Rt < 0 becomes anti-
natural for 0 < Ry <6. As observed from Fig. 5, the
antinatural analytical solution for Ry > 17 consists of
two branches, one stable, indicated by a solid line, the
other one unstable, by a dashed line. Numerical confir-
mation of the stable antinatural states can be reached
upon only using an impulsive flow pattern rotating in
the appropriate direction as an initial condition. Once an
antinatural state could have been obtained, for a given
value of Rr, it can be used as initial conditions to run
another antinatural state for new Rr. Since small dif-
ferences in Rt are required to assure convergence the
procedure may become prohibitively time-consuming to
check a complete branch, especially near the turning
point. On the other hand, it has not been possible to
obtain numerical confirmation of the unstable branch of
the antinatural analytical solution, and this, indepen-
dently of the initial conditions used to initiate the nu-
merical runs.

The existence of multiple solutions in the vicinity of
a = 0 will be now discussed. The solution surface drawn
in Fig. 4(a) may also be cut by ¥.—a planes located at

0.2

lP(? /
0.1

./.) —— Analytical

different Rt, resulting in contour lines of the type shown
in Figs. 7(a)—(c) for the case Rg = 20 and Le = 10. In the
absence of the side heating (a = 0), according to the
linear stability theory, Eq. (33), for Rs = 20 convection
is possible only when Rt > — 8. Fig. 7(b) shows the
bifurcation curve obtained for Rt = —8. For this situa-
tion, when a = 0, the value of ¥, is also zero since Rt
corresponds exactly to the critical Rayleigh number for
the onset of motion. The effect of the side heating is to
induce a natural convective cell, the intensity of which
increases with the magnitude of a. Figs. 7(a) and (c)
show the results obtained for Rt > —8. For this situa-
tion, it is observed that multiple solutions (stable and
unstable) are possible in the vicinity of a = 0. Fig. 7(a)
shows the results obtained for Rt < 0, namely Rt = —2.
The case a = 0 corresponds to a pure Bénard situation
and the flow can rotate indifferently clockwise and
counterclockwise. For a > 0, the curves above and be-
low the abscissa correspond to natural and antinatural
states, respectively, and the converse is true for a < 0.
Fig. 7(c) shows the results obtained for Rt > 0, namely
Rt = 10. The resulting bifurcation diagram is seen to be
qualitatively the mirror-image of the case with Rt neg-
ative (see for instance Fig. 7(a)). It is noticed that for a
given R, there is a critical value of « for the existence of
an antinatural state. Here again a good agreement is
obtained between the analytical and the numerical re-
sults.

Figs. 8(a)—(c) show the effect of side heating ¢ on
the magnitude of the stream function at the center of
the cavity Y., Nusselt number Nu and Sherwood
number Sh as a function of Ry for Le=35 and
Rsg = —20. A good agreement between the analytical
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Fig. 7. Flow intensity ¥, as a function of a for Rs = 20, Le =10: (a) Ryt = —2, (b) Rr = —8 and (c) Rt = 10 (

---- unstable solution).
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Fig. 8. Bifurcation curves as a function of Ry and a for Rg = —20 and Le =5: (a) flow intensity ¥, (b) Nusselt number Nu and (c)
Sherwood number S/ ( stable solutions, - - - - unstable solutions).

and the numerical results is observed in these graphs.
In the absence of the side heating (¢ = 0), as already
discussed in Fig. 2, the bifurcation curve is subcritical
due to the fact that the buoyancy forces induced by
the thermal and solutal contributions are opposing
each other, the destabilizing agent being the faster
diffusion component (Le > 1). Thus, convection is
possible below the supercritical Rayleigh number
R3P =32 down to the subcritical value R$® ~ 18.32,
as predicted by Eqgs. (33) and (34) respectively. Upon
applying side heating, it is seen from Fig. 8(a) that for
a given a, three different convective states are possible
for a given range of Rr; one of these solutions being
unstable.

Finally it is noticed that if @ is small enough the
natural solution ‘“penetrates” in the subcritical range
R < Ry <RYY. Also, the existence of two antinatural
convective states, one of which is unstable is also
possible for the same range of Ry. Thus the analytical
solution predicts the existence of five different solutions,
two of which are unstable. This point is illustrated in
Fig. 9, for the case Rs = —20, Le =10 and « =0.005. For
this situation three stable solutions were obtained nu-
merically for Rt = 18, as illustrated in Figs. 10 (a)—(c),
one of the solutions being antinatural and the two others
natural. Here again, appropriate initial conditions had
to be used to simulate the two different antinatural

p | Numerical Analytical

ANTINATURAL

10 30 40 0

-1 NATURAL

3

Fig. 9. Flow intensity Y. as a function of Ry for
Rs = —20, Le = 10 and a = 0.005.

solutions. As the intensity of the side heating is made
larger, the penetration of the natural flow within the
subcritical region disappears progressively and only two
stable multiple convective states are possible for suf-
ficiently high values of Rr.

6. Conclusions

The problem of thermosolutal convection in a shal-
low porous layer subject to cross fluxes of heat and mass
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(b)

()

Fig. 10. Contour lines of stream function ¥ (top), temperature 7" and concentration S for the case Rs = —20, Rt = 18, Le = 10,
A =8 and a = 0.005: (a) natural solutions and (b) and (c) antinatural solutions.

has been investigated. Analytical solutions for the
stream function, temperature and solutal fields, in the
central region of the cavity, are obtained using a parallel
flow approximation. The analytical results indicate that
for supercritical convection, when both the solutal and
thermal contributions are destabilizing, up to three dif-
ferent solutions, one of these solutions being unstable,
are possible for a given set of the governing parameters
provided that Rt is made higher than a critical value
which depends upon Rs, Le and a. On the other hand,
for subcritical convection which occurs when the two
buoyancy forces are opposing each other and when the
stabilizing agent is the slower diffusion component, up to
five different solutions (two of which are unstable) are
possible. The existence of multiple solutions in the
vicinity of Rt = 0 has also been demonstrated.

A finite difference method is used to obtain numerical
solutions of the full governing equations. A good
agreement is observed between the analytical predictions
and the numerical simulations.
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